Source Code
Overview
ETH Balance
0 ETH
Token Holdings
More Info
ContractCreator
Multi Chain
Multichain Addresses
9 addresses found via
Latest 5 from a total of 5 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
Value | ||||
---|---|---|---|---|---|---|---|---|---|
Set Implementati... | 9653696 | 88 days 22 hrs ago | IN | 0 ETH | 0 | ||||
Set Implementati... | 9653477 | 88 days 23 hrs ago | IN | 0 ETH | 0.00004506 | ||||
Set Implementati... | 9646543 | 90 days 3 hrs ago | IN | 0 ETH | 0.00004506 | ||||
Set Implementati... | 9646045 | 90 days 5 hrs ago | IN | 0 ETH | 0.000003 | ||||
Set Implementati... | 9539391 | 109 days 1 hr ago | IN | 0 ETH | 0.00000567 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Txn Hash | Block | From | To | Value | ||
---|---|---|---|---|---|---|
10161915 | 2 hrs 27 mins ago | 0 ETH | ||||
10161915 | 2 hrs 27 mins ago | Contract Creation | 0 ETH | |||
10161915 | 2 hrs 27 mins ago | 0 ETH | ||||
10130172 | 5 days 14 hrs ago | 0 ETH | ||||
10130172 | 5 days 14 hrs ago | Contract Creation | 0 ETH | |||
10130172 | 5 days 14 hrs ago | 0 ETH | ||||
10042043 | 21 days 2 hrs ago | 0 ETH | ||||
10042043 | 21 days 2 hrs ago | Contract Creation | 0 ETH | |||
10042043 | 21 days 2 hrs ago | 0 ETH | ||||
10041946 | 21 days 2 hrs ago | 0 ETH | ||||
10041946 | 21 days 2 hrs ago | Contract Creation | 0 ETH | |||
10041946 | 21 days 2 hrs ago | 0 ETH | ||||
10041915 | 21 days 3 hrs ago | 0 ETH | ||||
10041915 | 21 days 3 hrs ago | Contract Creation | 0 ETH | |||
10041915 | 21 days 3 hrs ago | 0 ETH | ||||
10041902 | 21 days 3 hrs ago | 0 ETH | ||||
10041902 | 21 days 3 hrs ago | Contract Creation | 0 ETH | |||
10041902 | 21 days 3 hrs ago | 0 ETH | ||||
10041886 | 21 days 3 hrs ago | 0 ETH | ||||
10041886 | 21 days 3 hrs ago | Contract Creation | 0 ETH | |||
10041886 | 21 days 3 hrs ago | 0 ETH | ||||
10041867 | 21 days 3 hrs ago | 0 ETH | ||||
10041867 | 21 days 3 hrs ago | Contract Creation | 0 ETH | |||
10041867 | 21 days 3 hrs ago | 0 ETH | ||||
10041856 | 21 days 3 hrs ago | 0 ETH |
Loading...
Loading
Contract Name:
EtherspotWalletFactory
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./EtherspotWallet.sol"; import "./Proxy.sol"; import "../interfaces/IEtherspotWalletFactory.sol"; /** * @title Proxy Factory - Allows to create a new proxy contract and execute a message call to the new proxy within one transaction. */ contract EtherspotWalletFactory is IEtherspotWalletFactory { address public accountImplementation; address public owner; event OwnerChanged(address newOwner); modifier onlyOwner() { require(owner == msg.sender, "EtherspotWalletFactory:: only owner"); _; } constructor(address _owner) { owner = _owner; } /// @dev Allows to retrieve the creation code used for the Proxy deployment. With this it is easily possible to calculate predicted address. function accountCreationCode() public pure returns (bytes memory) { return type(Proxy).creationCode; } /** * @notice Creates a new account * @param _owner owner of the account to be deployed * @param _index extra salt that allows to deploy more account if needed for same owner * @return ret the address of the deployed account */ function createAccount( address _owner, uint256 _index ) external returns (address ret) { require( accountImplementation != address(0), "EtherspotWalletFactory:: implementation not set" ); address account = getAddress(_owner, _index); if (account.code.length > 0) { return account; } bytes memory initializer = getInitializer(_owner); bytes32 salt = keccak256( abi.encodePacked(keccak256(initializer), _index) ); bytes memory deploymentData = abi.encodePacked( type(Proxy).creationCode, uint256(uint160(accountImplementation)) ); // solhint-disable-next-line no-inline-assembly assembly { ret := create2( 0x0, add(0x20, deploymentData), mload(deploymentData), salt ) } require(address(ret) != address(0), "Create2 call failed"); // calldata for init method if (initializer.length > 0) { // solhint-disable-next-line no-inline-assembly assembly { if eq( call( gas(), ret, 0, add(initializer, 0x20), mload(initializer), 0, 0 ), 0 ) { revert(0, 0) } } } emit AccountCreation(ret, _owner, _index); } /** * @notice Deploys account using create2 * @param _owner owner of the account to be deployed * @param _index extra salt that allows to deploy more account if needed for same owner */ function getAddress( address _owner, uint256 _index ) public view returns (address proxy) { require( accountImplementation != address(0), "EtherspotWalletFactory:: implementation not set" ); bytes memory initializer = getInitializer(_owner); bytes32 salt = keccak256( abi.encodePacked(keccak256(initializer), _index) ); bytes memory code = abi.encodePacked( type(Proxy).creationCode, uint256(uint160(accountImplementation)) ); bytes32 hash = keccak256( abi.encodePacked(bytes1(0xff), address(this), salt, keccak256(code)) ); proxy = address(uint160(uint256(hash))); } /** * @dev Allows to retrieve the initializer data for the account. * @param _owner EOA signatory for the account to be deployed * @return initializer bytes for init method */ function getInitializer( address _owner ) internal pure returns (bytes memory) { return abi.encodeCall(EtherspotWallet.initialize, (_owner)); } /** * @dev Allows to set a new implementation contract address * @param _newImpl new implementation EtherspotWalletContract */ function setImplementation(EtherspotWallet _newImpl) external onlyOwner { accountImplementation = address(_newImpl); emit ImplementationSet(accountImplementation); } /** * @dev Checks implementation address matches address * @param _impl address to check against * @return boolean (true if accountImplementation == address) */ function checkImplementation(address _impl) external view returns (bool) { return accountImplementation == _impl; } function changeOwner(address _newOwner) external onlyOwner { require( _newOwner != address(0), "EtherspotWalletFactory:: new owner cannot be zero address" ); owner = _newOwner; emit OwnerChanged(_newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.0; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC1967.sol) pragma solidity ^0.8.0; /** * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC. * * _Available since v4.8.3._ */ interface IERC1967 { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/ERC1967/ERC1967Upgrade.sol) pragma solidity ^0.8.2; import "../beacon/IBeacon.sol"; import "../../interfaces/IERC1967.sol"; import "../../interfaces/draft-IERC1822.sol"; import "../../utils/Address.sol"; import "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. * * _Available since v4.1._ */ abstract contract ERC1967Upgrade is IERC1967 { // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1 bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143; /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev Returns the current implementation address. */ function _getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Perform implementation upgrade * * Emits an {Upgraded} event. */ function _upgradeTo(address newImplementation) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); } /** * @dev Perform implementation upgrade with additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCall(address newImplementation, bytes memory data, bool forceCall) internal { _upgradeTo(newImplementation); if (data.length > 0 || forceCall) { Address.functionDelegateCall(newImplementation, data); } } /** * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call. * * Emits an {Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data, bool forceCall) internal { // Upgrades from old implementations will perform a rollback test. This test requires the new // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing // this special case will break upgrade paths from old UUPS implementation to new ones. if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) { _setImplementation(newImplementation); } else { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID"); } catch { revert("ERC1967Upgrade: new implementation is not UUPS"); } _upgradeToAndCall(newImplementation, data, forceCall); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is * validated in the constructor. */ bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. */ function _getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(_ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { require(newAdmin != address(0), "ERC1967: new admin is the zero address"); StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {AdminChanged} event. */ function _changeAdmin(address newAdmin) internal { emit AdminChanged(_getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor. */ bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function _getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(_BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract"); require( Address.isContract(IBeacon(newBeacon).implementation()), "ERC1967: beacon implementation is not a contract" ); StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon; } /** * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that). * * Emits a {BeaconUpgraded} event. */ function _upgradeBeaconToAndCall(address newBeacon, bytes memory data, bool forceCall) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0 || forceCall) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.0; import "../../interfaces/draft-IERC1822.sol"; import "../ERC1967/ERC1967Upgrade.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. * * _Available since v4.1._ */ abstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment address private immutable __self = address(this); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { require(address(this) != __self, "Function must be called through delegatecall"); require(_getImplementation() == __self, "Function must be called through active proxy"); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall"); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual override notDelegated returns (bytes32) { return _IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeTo(address newImplementation) public virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, new bytes(0), false); } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data, true); } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeTo} and {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal override onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC777/IERC777Recipient.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC777TokensRecipient standard as defined in the EIP. * * Accounts can be notified of {IERC777} tokens being sent to them by having a * contract implement this interface (contract holders can be their own * implementer) and registering it on the * https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry]. * * See {IERC1820Registry} and {ERC1820Implementer}. */ interface IERC777Recipient { /** * @dev Called by an {IERC777} token contract whenever tokens are being * moved or created into a registered account (`to`). The type of operation * is conveyed by `from` being the zero address or not. * * This call occurs _after_ the token contract's state is updated, so * {IERC777-balanceOf}, etc., can be used to query the post-operation state. * * This function may revert to prevent the operation from being executed. */ function tokensReceived( address operator, address from, address to, uint256 amount, bytes calldata userData, bytes calldata operatorData ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.0; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract"); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._ * _Available since v4.9 for `string`, `bytes`._ */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-empty-blocks */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; import "./Helpers.sol"; /** * Basic account implementation. * this contract provides the basic logic for implementing the IAccount interface - validateUserOp * specific account implementation should inherit it and provide the account-specific logic */ abstract contract BaseAccount is IAccount { using UserOperationLib for UserOperation; //return value in case of signature failure, with no time-range. // equivalent to _packValidationData(true,0,0); uint256 constant internal SIG_VALIDATION_FAILED = 1; /** * Return the account nonce. * This method returns the next sequential nonce. * For a nonce of a specific key, use `entrypoint.getNonce(account, key)` */ function getNonce() public view virtual returns (uint256) { return entryPoint().getNonce(address(this), 0); } /** * return the entryPoint used by this account. * subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /** * Validate user's signature and nonce. * subclass doesn't need to override this method. Instead, it should override the specific internal validation methods. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external override virtual returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); _validateNonce(userOp.nonce); _payPrefund(missingAccountFunds); } /** * ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal virtual view { require(msg.sender == address(entryPoint()), "account: not from EntryPoint"); } /** * validate the signature is valid for this message. * @param userOp validate the userOp.signature field * @param userOpHash convenient field: the hash of the request, to check the signature against * (also hashes the entrypoint and chain id) * @return validationData signature and time-range of this operation * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature(UserOperation calldata userOp, bytes32 userOpHash) internal virtual returns (uint256 validationData); /** * Validate the nonce of the UserOperation. * This method may validate the nonce requirement of this account. * e.g. * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps): * `require(nonce < type(uint64).max)` * For a hypothetical account that *requires* the nonce to be out-of-order: * `require(nonce & type(uint64).max == 0)` * * The actual nonce uniqueness is managed by the EntryPoint, and thus no other * action is needed by the account itself. * * @param nonce to validate * * solhint-disable-next-line no-empty-blocks */ function _validateNonce(uint256 nonce) internal view virtual { } /** * sends to the entrypoint (msg.sender) the missing funds for this transaction. * subclass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again) * @param missingAccountFunds the minimum value this method should send the entrypoint. * this value MAY be zero, in case there is enough deposit, or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success,) = payable(msg.sender).call{value : missingAccountFunds, gas : type(uint256).max}(""); (success); //ignore failure (its EntryPoint's job to verify, not account.) } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ /** * returned data from validateUserOp. * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData` * @param aggregator - address(0) - the account validated the signature by itself. * address(1) - the account failed to validate the signature. * otherwise - this is an address of a signature aggregator that must be used to validate the signature. * @param validAfter - this UserOp is valid only after this timestamp. * @param validaUntil - this UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } //extract sigFailed, validAfter, validUntil. // also convert zero validUntil to type(uint48).max function _parseValidationData(uint validationData) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } // intersect account and paymaster ranges. function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) { ValidationData memory accountValidationData = _parseValidationData(validationData); ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData); address aggregator = accountValidationData.aggregator; if (aggregator == address(0)) { aggregator = pmValidationData.aggregator; } uint48 validAfter = accountValidationData.validAfter; uint48 validUntil = accountValidationData.validUntil; uint48 pmValidAfter = pmValidationData.validAfter; uint48 pmValidUntil = pmValidationData.validUntil; if (validAfter < pmValidAfter) validAfter = pmValidAfter; if (validUntil > pmValidUntil) validUntil = pmValidUntil; return ValidationData(aggregator, validAfter, validUntil); } /** * helper to pack the return value for validateUserOp * @param data - the ValidationData to pack */ function _packValidationData(ValidationData memory data) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * helper to pack the return value for validateUserOp, when not using an aggregator * @param sigFailed - true for signature failure, false for success * @param validUntil last timestamp this UserOperation is valid (or zero for infinite) * @param validAfter first timestamp this UserOperation is valid */ function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp the operation that is about to be executed. * @param userOpHash hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call. * The excess is left as a deposit in the entrypoint, for future calls. * can be withdrawn anytime using "entryPoint.withdrawTo()" * In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero. * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds) external returns (uint256 validationData); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import "./UserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * validate aggregated signature. * revert if the aggregated signature does not match the given list of operations. */ function validateSignatures(UserOperation[] calldata userOps, bytes calldata signature) external view; /** * validate signature of a single userOp * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp the userOperation received from the user. * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig" */ function validateUserOpSignature(UserOperation calldata userOp) external view returns (bytes memory sigForUserOp); /** * aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation * @param userOps array of UserOperations to collect the signatures from. * @return aggregatedSignature the aggregated signature */ function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./UserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request * @param userOpHash - unique identifier for the request (hash its entire content, except signature). * @param sender - the account that generates this request. * @param paymaster - if non-null, the paymaster that pays for this request. * @param nonce - the nonce value from the request. * @param success - true if the sender transaction succeeded, false if reverted. * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution). */ event UserOperationEvent(bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed); /** * account "sender" was deployed. * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow. * @param sender the account that is deployed * @param factory the factory used to deploy this account (in the initCode) * @param paymaster the paymaster used by this UserOp */ event AccountDeployed(bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster); /** * An event emitted if the UserOperation "callData" reverted with non-zero length * @param userOpHash the request unique identifier. * @param sender the sender of this request * @param nonce the nonce used in the request * @param revertReason - the return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason(bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason); /** * an event emitted by handleOps(), before starting the execution loop. * any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * signature aggregator used by the following UserOperationEvents within this bundle. */ event SignatureAggregatorChanged(address indexed aggregator); /** * a custom revert error of handleOps, to identify the offending op. * NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero) * @param reason - revert reason * The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. */ error FailedOp(uint256 opIndex, string reason); /** * error case when a signature aggregator fails to verify the aggregated signature it had created. */ error SignatureValidationFailed(address aggregator); /** * Successful result from simulateValidation. * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) */ error ValidationResult(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo); /** * Successful result from simulateValidation, if the account returns a signature aggregator * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator) * bundler MUST use it to verify the signature, or reject the UserOperation */ error ValidationResultWithAggregation(ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo, AggregatorStakeInfo aggregatorInfo); /** * return value of getSenderAddress */ error SenderAddressResult(address sender); /** * return value of simulateHandleOp */ error ExecutionResult(uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult); //UserOps handled, per aggregator struct UserOpsPerAggregator { UserOperation[] userOps; // aggregator address IAggregator aggregator; // aggregated signature bytes signature; } /** * Execute a batch of UserOperation. * no signature aggregator is used. * if any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops the operations to execute * @param beneficiary the address to receive the fees */ function handleOps(UserOperation[] calldata ops, address payable beneficiary) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts) * @param beneficiary the address to receive the fees */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * generate a request Id - unique identifier for this request. * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. */ function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32); /** * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp. * @dev this method always revert. Successful result is ValidationResult error. other errors are failures. * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data. * @param userOp the user operation to validate. */ function simulateValidation(UserOperation calldata userOp) external; /** * gas and return values during simulation * @param preOpGas the gas used for validation (including preValidationGas) * @param prefund the required prefund for this operation * @param sigFailed validateUserOp's (or paymaster's) signature check failed * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range) * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range) * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; bool sigFailed; uint48 validAfter; uint48 validUntil; bytes paymasterContext; } /** * returned aggregated signature info. * the aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * this method always revert, and returns the address in SenderAddressResult error * @param initCode the constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; /** * simulate full execution of a UserOperation (including both validation and target execution) * this method will always revert with "ExecutionResult". * it performs full validation of the UserOperation, but ignores signature error. * an optional target address is called after the userop succeeds, and its value is returned * (before the entire call is reverted) * Note that in order to collect the the success/failure of the target call, it must be executed * with trace enabled to track the emitted events. * @param op the UserOperation to simulate * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult * are set to the return from that call. * @param targetCallData callData to pass to target address */ function simulateHandleOp(UserOperation calldata op, address target, bytes calldata targetCallData) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. */ function incrementNonce(uint192 key) external; }
// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.12; /** * manage deposits and stakes. * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account) * stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited( address indexed account, uint256 totalDeposit ); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); /// Emitted when stake or unstake delay are modified event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); /// Emitted once a stake is scheduled for withdrawal event StakeUnlocked( address indexed account, uint256 withdrawTime ); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit the entity's deposit * @param staked true if this entity is staked. * @param stake actual amount of ether staked for this entity. * @param unstakeDelaySec minimum delay to withdraw the stake. * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps) * and the rest fit into a 2nd cell. * 112 bit allows for 10^15 eth * 48 bit for full timestamp * 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint112 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } //API struct used by getStakeInfo and simulateValidation struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /// @return info - full deposit information of given account function getDepositInfo(address account) external view returns (DepositInfo memory info); /// @return the deposit (for gas payment) of the account function balanceOf(address account) external view returns (uint256); /** * add to the deposit of the given account */ function depositTo(address account) external payable; /** * add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * attempt to unlock the stake. * the value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * withdraw from the (unlocked) stake. * must first call unlockStake and wait for the unstakeDelay to pass * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * withdraw from the deposit. * @param withdrawAddress the address to send withdrawn value. * @param withdrawAmount the amount to withdraw. */ function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-inline-assembly */ import {calldataKeccak} from "../core/Helpers.sol"; /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; } /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { function getSender(UserOperation calldata userOp) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly {data := calldataload(userOp)} return address(uint160(data)); } //relayer/block builder might submit the TX with higher priorityFee, but the user should not // pay above what he signed for. function gasPrice(UserOperation calldata userOp) internal view returns (uint256) { unchecked { uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) { address sender = getSender(userOp); uint256 nonce = userOp.nonce; bytes32 hashInitCode = calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); uint256 callGasLimit = userOp.callGasLimit; uint256 verificationGasLimit = userOp.verificationGasLimit; uint256 preVerificationGas = userOp.preVerificationGas; uint256 maxFeePerGas = userOp.maxFeePerGas; uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( sender, nonce, hashInitCode, hashCallData, callGasLimit, verificationGasLimit, preVerificationGas, maxFeePerGas, maxPriorityFeePerGas, hashPaymasterAndData ); } function hash(UserOperation calldata userOp) internal pure returns (bytes32) { return keccak256(pack(userOp)); } function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; /* solhint-disable no-empty-blocks */ import "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import "@openzeppelin/contracts/token/ERC777/IERC777Recipient.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol"; import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol"; /** * Token callback handler. * Handles supported tokens' callbacks, allowing account receiving these tokens. */ contract TokenCallbackHandler is IERC777Recipient, IERC721Receiver, IERC1155Receiver { function tokensReceived( address, address, address, uint256, bytes calldata, bytes calldata ) external pure override { } function onERC721Received( address, address, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC721Receiver.onERC721Received.selector; } function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155BatchReceived.selector; } function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) { return interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC1155Receiver).interfaceId || interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/access/AccessController.sol"; contract $AccessController is AccessController { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor() {} function $MULTIPLY_FACTOR() external pure returns (uint128) { return MULTIPLY_FACTOR; } function $SIXTY_PERCENT() external pure returns (uint16) { return SIXTY_PERCENT; } function $INITIAL_PROPOSAL_TIMELOCK() external pure returns (uint24) { return INITIAL_PROPOSAL_TIMELOCK; } function $_addOwner(address _newOwner) external { super._addOwner(_newOwner); } function $_addGuardian(address _newGuardian) external { super._addGuardian(_newGuardian); } function $_removeOwner(address _owner) external { super._removeOwner(_owner); } function $_removeGuardian(address _guardian) external { super._removeGuardian(_guardian); } function $_checkIfSigned(uint256 _proposalId) external view returns (bool ret0) { (ret0) = super._checkIfSigned(_proposalId); } function $_checkQuorumReached(uint256 _proposalId) external view returns (bool ret0) { (ret0) = super._checkQuorumReached(_proposalId); } receive() external payable {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/interfaces/IAccessController.sol"; abstract contract $IAccessController is IAccessController { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor() {} receive() external payable {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/interfaces/IERC1271Wallet.sol"; abstract contract $IERC1271Wallet is IERC1271Wallet { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor() {} receive() external payable {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/interfaces/IEtherspotWallet.sol"; import "../../account-abstraction/contracts/interfaces/IEntryPoint.sol"; abstract contract $IEtherspotWallet is IEtherspotWallet { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor() {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/interfaces/IEtherspotWalletFactory.sol"; abstract contract $IEtherspotWalletFactory is IEtherspotWalletFactory { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor() {} receive() external payable {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/wallet/EtherspotWallet.sol"; contract $EtherspotWallet is EtherspotWallet { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; event return$_validateSignature(uint256 ret0); constructor(IEntryPoint anEntryPoint, IEtherspotWalletFactory anWalletFactory) EtherspotWallet(anEntryPoint, anWalletFactory) {} function $MULTIPLY_FACTOR() external pure returns (uint128) { return MULTIPLY_FACTOR; } function $SIXTY_PERCENT() external pure returns (uint16) { return SIXTY_PERCENT; } function $INITIAL_PROPOSAL_TIMELOCK() external pure returns (uint24) { return INITIAL_PROPOSAL_TIMELOCK; } function $_IMPLEMENTATION_SLOT() external pure returns (bytes32) { return _IMPLEMENTATION_SLOT; } function $_ADMIN_SLOT() external pure returns (bytes32) { return _ADMIN_SLOT; } function $_BEACON_SLOT() external pure returns (bytes32) { return _BEACON_SLOT; } function $SIG_VALIDATION_FAILED() external pure returns (uint256) { return SIG_VALIDATION_FAILED; } function $_initialize(address anOwner) external { super._initialize(anOwner); } function $_call(address target,uint256 value,bytes calldata data) external { super._call(target,value,data); } function $_validateSignature(UserOperation calldata userOp,bytes32 userOpHash) external returns (uint256 ret0) { (ret0) = super._validateSignature(userOp,userOpHash); emit return$_validateSignature(ret0); } function $_authorizeUpgrade(address newImplementation) external view { super._authorizeUpgrade(newImplementation); } function $_addOwner(address _newOwner) external { super._addOwner(_newOwner); } function $_addGuardian(address _newGuardian) external { super._addGuardian(_newGuardian); } function $_removeOwner(address _owner) external { super._removeOwner(_owner); } function $_removeGuardian(address _guardian) external { super._removeGuardian(_guardian); } function $_checkIfSigned(uint256 _proposalId) external view returns (bool ret0) { (ret0) = super._checkIfSigned(_proposalId); } function $_checkQuorumReached(uint256 _proposalId) external view returns (bool ret0) { (ret0) = super._checkQuorumReached(_proposalId); } function $_disableInitializers() external { super._disableInitializers(); } function $_getInitializedVersion() external view returns (uint8 ret0) { (ret0) = super._getInitializedVersion(); } function $_isInitializing() external view returns (bool ret0) { (ret0) = super._isInitializing(); } function $_getImplementation() external view returns (address ret0) { (ret0) = super._getImplementation(); } function $_upgradeTo(address newImplementation) external { super._upgradeTo(newImplementation); } function $_upgradeToAndCall(address newImplementation,bytes calldata data,bool forceCall) external { super._upgradeToAndCall(newImplementation,data,forceCall); } function $_upgradeToAndCallUUPS(address newImplementation,bytes calldata data,bool forceCall) external { super._upgradeToAndCallUUPS(newImplementation,data,forceCall); } function $_getAdmin() external view returns (address ret0) { (ret0) = super._getAdmin(); } function $_changeAdmin(address newAdmin) external { super._changeAdmin(newAdmin); } function $_getBeacon() external view returns (address ret0) { (ret0) = super._getBeacon(); } function $_upgradeBeaconToAndCall(address newBeacon,bytes calldata data,bool forceCall) external { super._upgradeBeaconToAndCall(newBeacon,data,forceCall); } function $_requireFromEntryPoint() external view { super._requireFromEntryPoint(); } function $_validateNonce(uint256 nonce) external view { super._validateNonce(nonce); } function $_payPrefund(uint256 missingAccountFunds) external { super._payPrefund(missingAccountFunds); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/wallet/EtherspotWalletFactory.sol"; contract $EtherspotWalletFactory is EtherspotWalletFactory { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor(address _owner) EtherspotWalletFactory(_owner) {} function $getInitializer(address _owner) external pure returns (bytes memory ret0) { (ret0) = super.getInitializer(_owner); } receive() external payable {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../../src/wallet/Proxy.sol"; contract $Proxy is Proxy { bytes32 public __hh_exposed_bytecode_marker = "hardhat-exposed"; constructor(address _singleton) Proxy(_singleton) {} function $_IMPLEMENTATION_SLOT() external pure returns (bytes32) { return _IMPLEMENTATION_SLOT; } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; import "../interfaces/IAccessController.sol"; abstract contract AccessController is IAccessController { uint128 immutable MULTIPLY_FACTOR = 1000; uint16 immutable SIXTY_PERCENT = 600; uint24 immutable INITIAL_PROPOSAL_TIMELOCK = 24 hours; uint256 public ownerCount; uint256 public guardianCount; uint256 public proposalId; uint256 public proposalTimelock; mapping(address => bool) private owners; mapping(address => bool) private guardians; mapping(uint256 => NewOwnerProposal) private proposals; struct NewOwnerProposal { address newOwnerProposed; bool resolved; uint256 approvalCount; address[] guardiansApproved; uint256 proposedAt; } modifier onlyOwner() { require( isOwner(msg.sender) || msg.sender == address(this), "ACL:: only owner" ); _; } modifier onlyGuardian() { require(isGuardian(msg.sender), "ACL:: only guardian"); _; } modifier onlyOwnerOrGuardian() { require( isOwner(msg.sender) || isGuardian(msg.sender), "ACL:: only owner or guardian" ); _; } modifier onlyOwnerOrEntryPoint(address _entryPoint) { require( msg.sender == _entryPoint || isOwner(msg.sender), "ACL:: not owner or entryPoint" ); _; } function isOwner(address _address) public view returns (bool) { return owners[_address]; } function isGuardian(address _address) public view returns (bool) { return guardians[_address]; } function addOwner(address _newOwner) external onlyOwner { _addOwner(_newOwner); } function removeOwner(address _owner) external onlyOwner { _removeOwner(_owner); } function addGuardian(address _newGuardian) external onlyOwner { _addGuardian(_newGuardian); } function removeGuardian(address _guardian) external onlyOwner { _removeGuardian(_guardian); } function changeProposalTimelock(uint256 _newTimelock) external onlyOwner { proposalTimelock = _newTimelock; emit ProposalTimelockChanged(_newTimelock); } function getProposal( uint256 _proposalId ) public view returns ( address ownerProposed_, uint256 approvalCount_, address[] memory guardiansApproved_, bool resolved_, uint256 proposedAt_ ) { require( _proposalId != 0 && _proposalId <= proposalId, "ACL:: invalid proposal id" ); NewOwnerProposal memory proposal = proposals[_proposalId]; return ( proposal.newOwnerProposed, proposal.approvalCount, proposal.guardiansApproved, proposal.resolved, proposal.proposedAt ); } function discardCurrentProposal() external onlyOwnerOrGuardian { require( !proposals[proposalId].resolved, "ACL:: proposal already resolved" ); if (isGuardian(msg.sender) && proposalTimelock > 0) require( (proposals[proposalId].proposedAt + proposalTimelock) < block.timestamp, "ACL:: guardian cannot discard proposal until timelock relased" ); if (isGuardian(msg.sender) && proposalTimelock == 0) require( (proposals[proposalId].proposedAt + INITIAL_PROPOSAL_TIMELOCK) < block.timestamp, "ACL:: guardian cannot discard proposal until timelock relased" ); proposals[proposalId].resolved = true; emit ProposalDiscarded(proposalId, msg.sender); } function guardianPropose(address _newOwner) external onlyGuardian { require( guardianCount >= 3, "ACL:: not enough guardians to propose new owner (minimum 3)" ); if ( proposals[proposalId].guardiansApproved.length != 0 && proposals[proposalId].resolved == false ) revert("ACL:: latest proposal not yet resolved"); proposalId = proposalId + 1; proposals[proposalId].newOwnerProposed = _newOwner; proposals[proposalId].guardiansApproved.push(msg.sender); proposals[proposalId].approvalCount += 1; proposals[proposalId].resolved = false; proposals[proposalId].proposedAt = block.timestamp; emit ProposalSubmitted(proposalId, _newOwner, msg.sender); } function guardianCosign() external onlyGuardian { require(proposalId != 0, "ACL:: invalid proposal id"); require( !_checkIfSigned(proposalId), "ACL:: guardian already signed proposal" ); require( !proposals[proposalId].resolved, "ACL:: proposal already resolved" ); proposals[proposalId].guardiansApproved.push(msg.sender); proposals[proposalId].approvalCount += 1; address newOwner = proposals[proposalId].newOwnerProposed; if (_checkQuorumReached(proposalId)) { proposals[proposalId].resolved = true; _addOwner(newOwner); } else { emit QuorumNotReached( proposalId, newOwner, proposals[proposalId].approvalCount ); } } // INTERNAL function _addOwner(address _newOwner) internal { // no check for address(0) as used when creating wallet via BLS. require(_newOwner != address(0), "ACL:: zero address"); require(!owners[_newOwner], "ACL:: already owner"); if (isGuardian(_newOwner)) revert("ACL:: guardian cannot be owner"); emit OwnerAdded(_newOwner); owners[_newOwner] = true; ownerCount = ownerCount + 1; } function _addGuardian(address _newGuardian) internal { require(_newGuardian != address(0), "ACL:: zero address"); require(!guardians[_newGuardian], "ACL:: already guardian"); require(!isOwner(_newGuardian), "ACL:: guardian cannot be owner"); emit GuardianAdded(_newGuardian); guardians[_newGuardian] = true; guardianCount = guardianCount + 1; } function _removeOwner(address _owner) internal { require(owners[_owner], "ACL:: non-existant owner"); require(ownerCount > 1, "ACL:: wallet cannot be ownerless"); emit OwnerRemoved(_owner); owners[_owner] = false; ownerCount = ownerCount - 1; } function _removeGuardian(address _guardian) internal { require(guardians[_guardian], "ACL:: non-existant guardian"); emit GuardianRemoved(_guardian); guardians[_guardian] = false; guardianCount = guardianCount - 1; } function _checkIfSigned(uint256 _proposalId) internal view returns (bool) { for (uint i; i < proposals[_proposalId].guardiansApproved.length; i++) { if (proposals[_proposalId].guardiansApproved[i] == msg.sender) { return true; } } return false; } function _checkQuorumReached( uint256 _proposalId ) internal view returns (bool) { return ((proposals[_proposalId].approvalCount * MULTIPLY_FACTOR) / guardianCount >= SIXTY_PERCENT); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; interface IAccessController { event OwnerAdded(address newOwner); event OwnerRemoved(address removedOwner); event GuardianAdded(address newGuardian); event GuardianRemoved(address removedGuardian); event ProposalSubmitted( uint256 proposalId, address newOwnerProposed, address proposer ); event QuorumNotReached( uint256 proposalId, address newOwnerProposed, uint256 approvalCount ); event ProposalDiscarded(uint256 proposalId, address discardedBy); event ProposalTimelockChanged(uint256 newTimelock); function isOwner(address _address) external view returns (bool); function isGuardian(address _address) external view returns (bool); function addOwner(address _newOwner) external; function removeOwner(address _owner) external; function addGuardian(address _newGuardian) external; function removeGuardian(address _guardian) external; function changeProposalTimelock(uint256 _newTimelock) external; function getProposal( uint256 _proposalId ) external view returns ( address ownerProposed_, uint256 approvalCount_, address[] memory guardiansApproved_, bool resolved_, uint256 proposedAt_ ); function discardCurrentProposal() external; function guardianPropose(address _newOwner) external; function guardianCosign() external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; interface IERC1271Wallet { function isValidSignature( bytes32 hash, bytes calldata signature ) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; import {IEntryPoint} from "../../account-abstraction/contracts/interfaces/IEntryPoint.sol"; import "../interfaces/IAccessController.sol"; import "../interfaces/IERC1271Wallet.sol"; interface IEtherspotWallet is IAccessController, IERC1271Wallet { event EtherspotWalletInitialized( IEntryPoint indexed entryPoint, address indexed owner ); event EtherspotWalletReceived(address indexed from, uint256 indexed amount); function entryPoint() external view returns (IEntryPoint); function execute(address dest, uint256 value, bytes calldata func) external; function executeBatch( address[] calldata dest, uint256[] calldata value, bytes[] calldata func ) external; function isValidSignature( bytes32 hash, bytes calldata signature ) external view returns (bytes4 magicValue); function getDeposit() external view returns (uint256); function addDeposit() external payable; function withdrawDepositTo( address payable withdrawAddress, uint256 amount ) external; receive() external payable; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.12; interface IEtherspotWalletFactory { event AccountCreation( address indexed wallet, address indexed owner, uint256 index ); event ImplementationSet(address newImplementation); function accountCreationCode() external pure returns (bytes memory); function createAccount( address _owner, uint256 _index ) external returns (address ret); function getAddress( address _owner, uint256 _index ) external view returns (address proxy); function checkImplementation(address _impl) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.12; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; import "../../account-abstraction/contracts/core/BaseAccount.sol"; import "../../account-abstraction/contracts/samples/callback/TokenCallbackHandler.sol"; import "../interfaces/IEtherspotWallet.sol"; import "../interfaces/IEtherspotWalletFactory.sol"; import "../access/AccessController.sol"; contract EtherspotWallet is BaseAccount, UUPSUpgradeable, Initializable, TokenCallbackHandler, AccessController, IEtherspotWallet { using ECDSA for bytes32; /// STORAGE IEntryPoint private immutable _entryPoint; IEtherspotWalletFactory private immutable _walletFactory; bytes4 private constant ERC1271_SUCCESS = 0x1626ba7e; /// EXTERNAL METHODS constructor( IEntryPoint anEntryPoint, IEtherspotWalletFactory anWalletFactory ) { require( address(anEntryPoint) != address(0) && address(anWalletFactory) != address(0), "EtherspotWallet:: invalid constructor parameter" ); _entryPoint = anEntryPoint; _walletFactory = anWalletFactory; _disableInitializers(); // solhint-disable-previous-line no-empty-blocks } function execute( address dest, uint256 value, bytes calldata func ) external onlyOwnerOrEntryPoint(address(entryPoint())) { _call(dest, value, func); } function executeBatch( address[] calldata dest, uint256[] calldata value, bytes[] calldata func ) external onlyOwnerOrEntryPoint(address(entryPoint())) { require( dest.length > 0 && dest.length == value.length && value.length == func.length, "EtherspotWallet:: executeBatch: wrong array lengths" ); for (uint256 i; i < dest.length; ) { _call(dest[i], value[i], func[i]); unchecked { ++i; } } } /** * Implementation of ISignatureValidator * @dev doesn't allow the owner to be a smart contract, SCW should use {isValidSig} * @param hash 32 bytes hash of the data signed on the behalf of address(msg.sender) * @param signature Signature byte array associated with _dataHash * @return ERC1271 magic value. */ function isValidSignature( bytes32 hash, bytes calldata signature ) external view returns (bytes4) { address owner = ECDSA.recover(hash, signature); if (isOwner(owner)) { return ERC1271_SUCCESS; } return bytes4(0xffffffff); } receive() external payable { emit EtherspotWalletReceived(msg.sender, msg.value); } /// PUBLIC /// @inheritdoc BaseAccount function entryPoint() public view virtual override(BaseAccount, IEtherspotWallet) returns (IEntryPoint) { return _entryPoint; } /** * check current account deposit in the entryPoint */ function getDeposit() public view returns (uint256) { return entryPoint().balanceOf(address(this)); } function initialize(address anOwner) public virtual initializer { _initialize(anOwner); } /** * deposit more funds for this account in the entryPoint */ function addDeposit() external payable { entryPoint().depositTo{value: msg.value}(address(this)); } /** * withdraw value from the account's deposit * @param withdrawAddress target to send to * @param amount to withdraw */ function withdrawDepositTo( address payable withdrawAddress, uint256 amount ) external onlyOwner { entryPoint().withdrawTo(withdrawAddress, amount); } /// INTERNAL function _initialize(address anOwner) internal virtual { _addOwner(anOwner); emit EtherspotWalletInitialized(_entryPoint, anOwner); } function _call(address target, uint256 value, bytes memory data) internal { (bool success, bytes memory result) = target.call{value: value}(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } function _validateSignature( UserOperation calldata userOp, bytes32 userOpHash ) internal virtual override returns (uint256) { bytes32 hash = userOpHash.toEthSignedMessageHash(); if (!isOwner(hash.recover(userOp.signature))) return SIG_VALIDATION_FAILED; return 0; } function _authorizeUpgrade( address newImplementation ) internal view override onlyOwner { require( _walletFactory.checkImplementation(newImplementation), "EtherspotWallet:: upgrade implementation invalid" ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Generic proxy contract allows to execute all transactions applying the code of a master contract. */ contract Proxy { bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @notice Constructor function sets address of singleton contract. * @param _singleton Singleton address. */ constructor(address _singleton) { require(_singleton != address(0), "Invalid address provided"); assembly { sstore(_IMPLEMENTATION_SLOT, _singleton) } } fallback() external payable { address target; // solhint-disable-next-line no-inline-assembly assembly { target := sload(_IMPLEMENTATION_SLOT) calldatacopy(0, 0, calldatasize()) let success := delegatecall(gas(), target, 0, calldatasize(), 0, 0) returndatacopy(0, 0, returndatasize()) if eq(success, 0) { revert(0, returndatasize()) } return(0, returndatasize()) } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"wallet","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"AccountCreation","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newImplementation","type":"address"}],"name":"ImplementationSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerChanged","type":"event"},{"inputs":[],"name":"accountCreationCode","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"accountImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newOwner","type":"address"}],"name":"changeOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_impl","type":"address"}],"name":"checkImplementation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"createAccount","outputs":[{"internalType":"address","name":"ret","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"getAddress","outputs":[{"internalType":"address","name":"proxy","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract EtherspotWallet","name":"_newImpl","type":"address"}],"name":"setImplementation","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b506040516109eb3803806109eb83398101604081905261002f91610054565b600180546001600160a01b0319166001600160a01b0392909216919091179055610084565b60006020828403121561006657600080fd5b81516001600160a01b038116811461007d57600080fd5b9392505050565b610958806100936000396000f3fe608060405234801561001057600080fd5b50600436106100885760003560e01c80638da5cb5b1161005b5780638da5cb5b146100f8578063a6f9dae11461010b578063d784d42614610120578063e6c0c5971461013357600080fd5b806311464fbe1461008d57806331c884df146100bd5780635fbfb9cf146100d25780638cb84e18146100e5575b600080fd5b6000546100a0906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100c5610165565b6040516100b49190610667565b6100a06100e03660046106b2565b61018f565b6100a06100f33660046106b2565b610355565b6001546100a0906001600160a01b031681565b61011e6101193660046106de565b61047b565b005b61011e61012e3660046106de565b610576565b6101556101413660046106de565b6000546001600160a01b0390811691161490565b60405190151581526020016100b4565b60606040518060200161017790610636565b601f1982820381018352601f90910116604052919050565b600080546001600160a01b03166101c15760405162461bcd60e51b81526004016101b890610702565b60405180910390fd5b60006101cd8484610355565b90506001600160a01b0381163b156101e657905061034f565b60006101f1856105ee565b90506000818051906020012085604051602001610218929190918252602082015260400190565b60405160208183030381529060405280519060200120905060006040518060200161024290610636565b601f1982820381018352601f90910116604081905260005461027392916001600160a01b0390911690602001610751565b6040516020818303038152906040529050818151826020016000f594506001600160a01b0385166102dc5760405162461bcd60e51b815260206004820152601360248201527210dc99585d194c8818d85b1b0819985a5b1959606a1b60448201526064016101b8565b8251156102fd57600080600085516020870160008a5af1036102fd57600080fd5b866001600160a01b0316856001600160a01b03167f8967dcaa00d8fcb9bb2b5beff4aaf8c020063512cf08fbe11fec37a1e3a150f28860405161034291815260200190565b60405180910390a3505050505b92915050565b600080546001600160a01b031661037e5760405162461bcd60e51b81526004016101b890610702565b6000610389846105ee565b905060008180519060200120846040516020016103b0929190918252602082015260400190565b6040516020818303038152906040528051906020012090506000604051806020016103da90610636565b601f1982820381018352601f90910116604081905260005461040b92916001600160a01b0390911690602001610751565b60408051808303601f1901815282825280516020918201206001600160f81b0319828501523060601b6bffffffffffffffffffffffff1916602185015260358401959095526055808401959095528151808403909501855260759092019052825192019190912095945050505050565b6001546001600160a01b031633146104a55760405162461bcd60e51b81526004016101b890610773565b6001600160a01b0381166105215760405162461bcd60e51b815260206004820152603960248201527f457468657273706f7457616c6c6574466163746f72793a3a206e6577206f776e60448201527f65722063616e6e6f74206265207a65726f20616464726573730000000000000060648201526084016101b8565b600180546001600160a01b0319166001600160a01b0383169081179091556040519081527fa2ea9883a321a3e97b8266c2b078bfeec6d50c711ed71f874a90d500ae2eaf36906020015b60405180910390a150565b6001546001600160a01b031633146105a05760405162461bcd60e51b81526004016101b890610773565b600080546001600160a01b0319166001600160a01b0383169081179091556040519081527fab64f92ab780ecbf4f3866f57cee465ff36c89450dcce20237ca7a8d81fb7d139060200161056b565b6040516001600160a01b038216602482015260609060440160408051601f198184030181529190526020810180516001600160e01b031663189acdbd60e31b17905292915050565b61016c806107b783390190565b60005b8381101561065e578181015183820152602001610646565b50506000910152565b6020815260008251806020840152610686816040850160208701610643565b601f01601f19169190910160400192915050565b6001600160a01b03811681146106af57600080fd5b50565b600080604083850312156106c557600080fd5b82356106d08161069a565b946020939093013593505050565b6000602082840312156106f057600080fd5b81356106fb8161069a565b9392505050565b6020808252602f908201527f457468657273706f7457616c6c6574466163746f72793a3a20696d706c656d6560408201526e1b9d185d1a5bdb881b9bdd081cd95d608a1b606082015260800190565b60008351610763818460208801610643565b9190910191825250602001919050565b60208082526023908201527f457468657273706f7457616c6c6574466163746f72793a3a206f6e6c79206f776040820152623732b960e91b60608201526080019056fe608060405234801561001057600080fd5b5060405161016c38038061016c83398101604081905261002f916100b0565b6001600160a01b0381166100895760405162461bcd60e51b815260206004820152601860248201527f496e76616c696420616464726573732070726f76696465640000000000000000604482015260640160405180910390fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc556100e0565b6000602082840312156100c257600080fd5b81516001600160a01b03811681146100d957600080fd5b9392505050565b607e806100ee6000396000f3fe60806040527f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc543660008037600080366000845af43d6000803e806042573d6000fd5b503d6000f3fea2646970667358221220bf4792713f0ae541fee868815c68df07e96dbe0616b01cc209b0004f92ee91a964736f6c63430008110033a26469706673582212203e64300034d979bd11aa404f2cad9153ef1dfb4526906564f046df1fc218543d64736f6c6343000811003300000000000000000000000009fd4f6088f2025427ab1e89257a44747081ed59
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100885760003560e01c80638da5cb5b1161005b5780638da5cb5b146100f8578063a6f9dae11461010b578063d784d42614610120578063e6c0c5971461013357600080fd5b806311464fbe1461008d57806331c884df146100bd5780635fbfb9cf146100d25780638cb84e18146100e5575b600080fd5b6000546100a0906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b6100c5610165565b6040516100b49190610667565b6100a06100e03660046106b2565b61018f565b6100a06100f33660046106b2565b610355565b6001546100a0906001600160a01b031681565b61011e6101193660046106de565b61047b565b005b61011e61012e3660046106de565b610576565b6101556101413660046106de565b6000546001600160a01b0390811691161490565b60405190151581526020016100b4565b60606040518060200161017790610636565b601f1982820381018352601f90910116604052919050565b600080546001600160a01b03166101c15760405162461bcd60e51b81526004016101b890610702565b60405180910390fd5b60006101cd8484610355565b90506001600160a01b0381163b156101e657905061034f565b60006101f1856105ee565b90506000818051906020012085604051602001610218929190918252602082015260400190565b60405160208183030381529060405280519060200120905060006040518060200161024290610636565b601f1982820381018352601f90910116604081905260005461027392916001600160a01b0390911690602001610751565b6040516020818303038152906040529050818151826020016000f594506001600160a01b0385166102dc5760405162461bcd60e51b815260206004820152601360248201527210dc99585d194c8818d85b1b0819985a5b1959606a1b60448201526064016101b8565b8251156102fd57600080600085516020870160008a5af1036102fd57600080fd5b866001600160a01b0316856001600160a01b03167f8967dcaa00d8fcb9bb2b5beff4aaf8c020063512cf08fbe11fec37a1e3a150f28860405161034291815260200190565b60405180910390a3505050505b92915050565b600080546001600160a01b031661037e5760405162461bcd60e51b81526004016101b890610702565b6000610389846105ee565b905060008180519060200120846040516020016103b0929190918252602082015260400190565b6040516020818303038152906040528051906020012090506000604051806020016103da90610636565b601f1982820381018352601f90910116604081905260005461040b92916001600160a01b0390911690602001610751565b60408051808303601f1901815282825280516020918201206001600160f81b0319828501523060601b6bffffffffffffffffffffffff1916602185015260358401959095526055808401959095528151808403909501855260759092019052825192019190912095945050505050565b6001546001600160a01b031633146104a55760405162461bcd60e51b81526004016101b890610773565b6001600160a01b0381166105215760405162461bcd60e51b815260206004820152603960248201527f457468657273706f7457616c6c6574466163746f72793a3a206e6577206f776e60448201527f65722063616e6e6f74206265207a65726f20616464726573730000000000000060648201526084016101b8565b600180546001600160a01b0319166001600160a01b0383169081179091556040519081527fa2ea9883a321a3e97b8266c2b078bfeec6d50c711ed71f874a90d500ae2eaf36906020015b60405180910390a150565b6001546001600160a01b031633146105a05760405162461bcd60e51b81526004016101b890610773565b600080546001600160a01b0319166001600160a01b0383169081179091556040519081527fab64f92ab780ecbf4f3866f57cee465ff36c89450dcce20237ca7a8d81fb7d139060200161056b565b6040516001600160a01b038216602482015260609060440160408051601f198184030181529190526020810180516001600160e01b031663189acdbd60e31b17905292915050565b61016c806107b783390190565b60005b8381101561065e578181015183820152602001610646565b50506000910152565b6020815260008251806020840152610686816040850160208701610643565b601f01601f19169190910160400192915050565b6001600160a01b03811681146106af57600080fd5b50565b600080604083850312156106c557600080fd5b82356106d08161069a565b946020939093013593505050565b6000602082840312156106f057600080fd5b81356106fb8161069a565b9392505050565b6020808252602f908201527f457468657273706f7457616c6c6574466163746f72793a3a20696d706c656d6560408201526e1b9d185d1a5bdb881b9bdd081cd95d608a1b606082015260800190565b60008351610763818460208801610643565b9190910191825250602001919050565b60208082526023908201527f457468657273706f7457616c6c6574466163746f72793a3a206f6e6c79206f776040820152623732b960e91b60608201526080019056fe608060405234801561001057600080fd5b5060405161016c38038061016c83398101604081905261002f916100b0565b6001600160a01b0381166100895760405162461bcd60e51b815260206004820152601860248201527f496e76616c696420616464726573732070726f76696465640000000000000000604482015260640160405180910390fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc556100e0565b6000602082840312156100c257600080fd5b81516001600160a01b03811681146100d957600080fd5b9392505050565b607e806100ee6000396000f3fe60806040527f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc543660008037600080366000845af43d6000803e806042573d6000fd5b503d6000f3fea2646970667358221220bf4792713f0ae541fee868815c68df07e96dbe0616b01cc209b0004f92ee91a964736f6c63430008110033a26469706673582212203e64300034d979bd11aa404f2cad9153ef1dfb4526906564f046df1fc218543d64736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000009fd4f6088f2025427ab1e89257a44747081ed59
-----Decoded View---------------
Arg [0] : _owner (address): 0x09FD4F6088f2025427AB1e89257A44747081Ed59
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 00000000000000000000000009fd4f6088f2025427ab1e89257a44747081ed59
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.